

Seated valves (PN 16)

VRG 2-2-way valve, external thread

VRG 3-3-way valve, external thread

Description

VRG valves provide a quality cost effective solution for most water and chilled applications.

The valves are designed to be combined with AMV(E) 335, AMV(E) 435 or AMV(E) 438 SU actuators.

Combinations with other actuators could be seen under Accessories.

Main data:

- DN 15-50
- k_{vs} 0.63-40 m³/h
- PN 16
- Temperature:
 - Circulation water / glycolic water up to 50 %: $2 (-10^*) \dots 130 ^{\circ}$ C
 - * At temperatures from -10 °C up to +2 °C use stem heater
- Connections:
 - External thread
- Compliance with Pressure Equipment Directive 97/23/EC

Ordering

Example:

3-way valve, DN 15, k_{vs} 1.6, PN 16, t_{max} 130 °C, ext. thread

- 1× VRG 3 DN 15 valve Code No.: **065Z0113**

Option:

MMM.C

- 1× Tailpieces Code No.: **06520291**

2 & 3-way valves VRG (external thread)

DN	k _{vs}	Code No.				
DN	(m³/h)	VRG 2	VRG 3			
7	0.63	065Z0131	065Z0111			
	1.0	065Z0132	065Z0112			
15	1.6	065Z0133	065Z0113			
ア	2.5	065Z0134	065Z0114			
	4.0	065Z0135	065Z0115			
20	6.3	065Z0136	065Z0116			
25	10	065Z0137	065Z0117			
32	16	065Z0138	065Z0118			
40	25	065Z0139	065Z0119			
50	40	065Z0140	065Z0120			

Accessories - Adapter

Actuators	max.∆p (bar)	Code No.		
AMV(E) 15, 25, 35, 323, 423, 523	4.0	065Z0311		

Accessories - Stem heater

Actuators	Power supply	Code No.		
AMV(E) 335, 435	24 V	065Z0315		
AMV(E) 438 SU	24 V	065B2171		

Accessories-Tailpieces

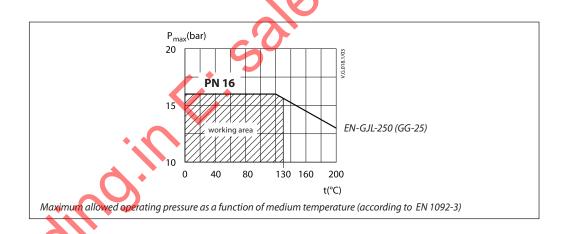
Туре		DN	Code No.	
	Rp ½	15	065Z0291	
	Rp ¾	20	065Z0292	
Tailpieces 1)	Rp 1	25	065Z0293	
ralipieces *	Rp 11/4	32	065Z0294	
	Rp 1½	40	065Z0295	
	Rp 2	50	065Z0296	
Adapter DN 15-50	/ AMV(E)1	5,25,35	065Z0311	

^{1) 1} tailpiece internal thread for VRG ext. thread (Ms - CuZn39Pb3)

Service kits

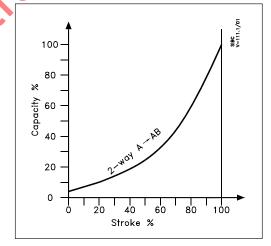
Туре	DN	Code No.		
	15	065Z0321		
	20	065Z0322		
Stuffing box	25	065Z0323		
	32	065Z0324		
	40/50	065Z0325		

DH-SMT/SI VD.CX.B1.02 © Danfoss 11/2009

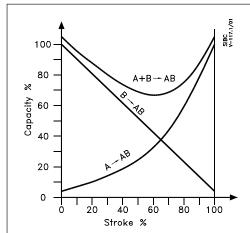

Seated valves VRG 2, VRG 3

Technical data

DN	15				20	25	32	40	50	
m³/h	0.63	1.0	1.6	2.5	4.0	6.3	10	16	25	40
Stroke mm		10				15				
Control range		30:1 50:1				100:1				
	LOG: port A-AB; LIN: port B-AB									
					≥ (0.4				
	A - AB ≤ 0.05 % of k _{vs}									
	B - AB ≤ 1.0 % of k _{vs}									
PN	16									
bar	4									
Medium		Circulation water / glycolic water up to 50 %								
	Min. 7, Max. 10									
°C	2 (-10 1) 130									
	ext. thread									
Materials										
Valve body			Grey cast iron EN-GJL-250 (GG-25)							
Valve stem			Stainless steel							
Valve cone		Brass								
Stuffing box sealing		EPDM								
	m³/h mm	m³/h 0.63 mm 30:1	m³/h 0.63 1.0 mm 30:1 PN bar	m³/h 0.63 1.0 1.6 mm 30:1 50	m³/h 0.63 1.0 1.6 2.5 mm	m³/h 0.63 1.0 1.6 2.5 4.0 mm 10 30:1 50:1 LOG: port A-AB A - AB ≤ 0. B - AB ≤ 1 PN 1 bar Circulation water / gly Min. 7, °C 2 (-10 1) ext. ti Grey cast iron EN Stainle	m³/h 0.63 1.0 1.6 2.5 4.0 6.3 mm 10 30:1 50:1 LOG: port A-AB; LIN: port in the port in	m³/h 0.63 1.0 1.6 2.5 4.0 6.3 10 mm 10 30:1 50:1 LOG: port A-AB; LIN: port B-AB ≥ 0.4 A - AB ≤ 0.05 % of k _{vs} B - AB ≤ 1.0 % of k _{vs} PN 16 Circulation water / glycolic water up to Min. 7, Max. 10 °C 2 (-10 ¹¹) 130 ext. thread Grey cast iron EN-GJL-250 (GG-25) Stainless steel Brass EPDM	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


¹⁾ At temperatures from -10 up to +2 °C use stem heater

Pressure temperature diagram



Valve characteristics

Valve characteristics log (2-way)

Valve characteristics log/lin (3-way)

DH-SMT/SI

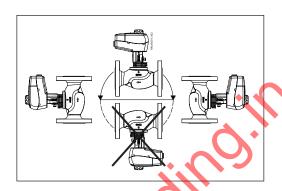
2 VD.CX.B1.02 © Danfoss 11/2009

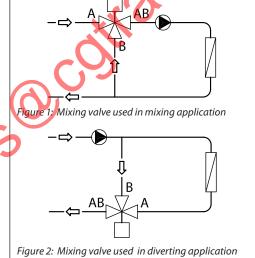
Seated valves VRG 2, VRG 3

Installation

Valve mounting

Before valve mounting the pipes have to be cleaned and free from abrasion. Valve must be mounted according to flow direction as indicated on valve body. Mechanical loads of the valve body caused by the pipes are not allowed. Valve should be free of vibrations as well.


Installation of the valve with the actuator is allowed in horizontal position or upwards. Installation downwards is not allowed.

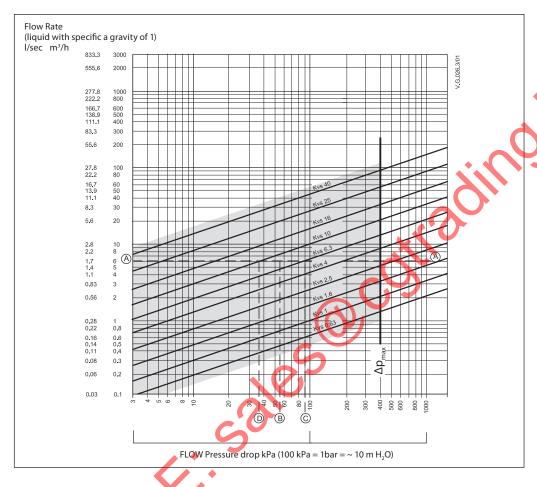

Application schemes for 3-way mixing valves

3-way valve is mixing valve meaning that A and B ports are inlet ports, and AB port is outlet port (fig. 1). In case valve should be used as diverting valve (which is in general not allowed) it is a solution to install valve in return pipe (fig. 2).

Remark:

3-way valve can be used as diverting valve (AB is inlet port, A and B are outlet ports) but only up to differential pressure over the valve equal to 1/10 of max. closing pressure stated in Technical data section.

Disposal


MMM. COLLAGI

The valve must be dismantled and the elements sorted into various material groups before disposal

<u>Danfoss</u>

Sizing

Example

Design data: Flow rate: 6 m³/h System pressure drop: 55 kPa

Locate the horizontal line representing a flow rate of 6 m³/h (line A-A). The valve authority is given by the equation:

Valve authority,
$$a = \frac{\Delta p1}{\Delta p1 + \Delta p2}$$

Where

 Δ p1 = pressure drop across the fully open valve

 $\Delta p2$ = pressure drop across the rest of the circuit with a full open valve

The ideal valve would give a pressure drop equal to the system pressure drop (i.e. an authority of 0.5):

if:
$$\Delta p1 = \Delta p2$$

 $a = \Delta p\frac{1}{2} \times \Delta p1 = 0.5$

In this example an authority of 0.5 would be given by a valve having a pressure drop of 55 kPa at that flow rate (point B). The intersection of line A–A with a vertical line drawn from B lies between two diagonal lines; this means that no ideally-sized valve is available.

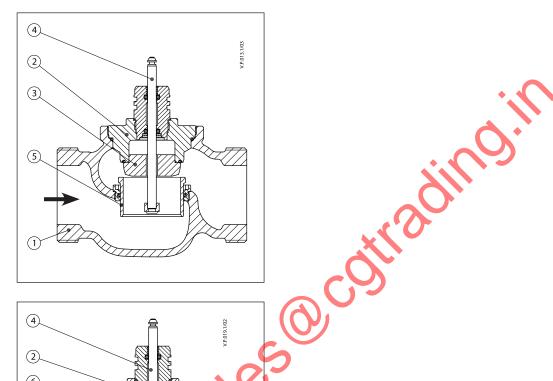
The intersection of line A–A with the diagonal lines gives the pressure drops stated by real, rather than ideal, valves. In this case, a valve with k_{vs} 6.3 would give a pressure drop of 90.7 kPa (point C):

hance valve authority =
$$\frac{90.7}{90.7 + 55} = 0.62$$

The second largest valve, with k_{vs} 10, would give a pressure drop of 36 kPa (point D):

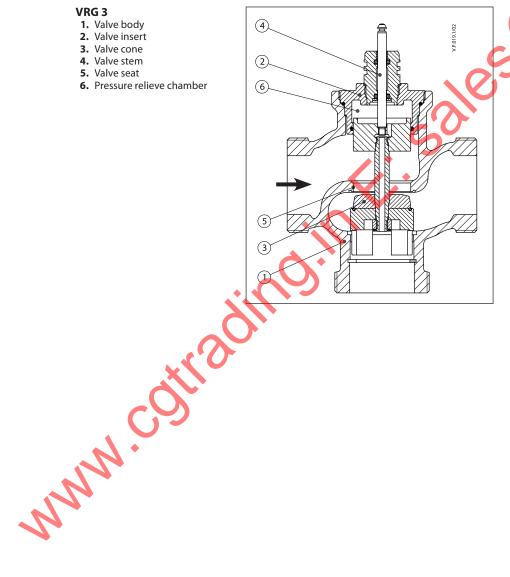
hence valve authority
$$=\frac{36}{36+55}=0.395$$

Generally, for a 3 port application, the smaller valve would be selected (resulting in a valve authority higher than 0.5 and therefore improved control). However, this will increase the total pressure and should be checked by the system designer for compatibility with available pump heads, etc. The ideal authority is 0.5 with a preferred range of between 0.4 and 0.7.


Seated valves VRG 2, VRG 3

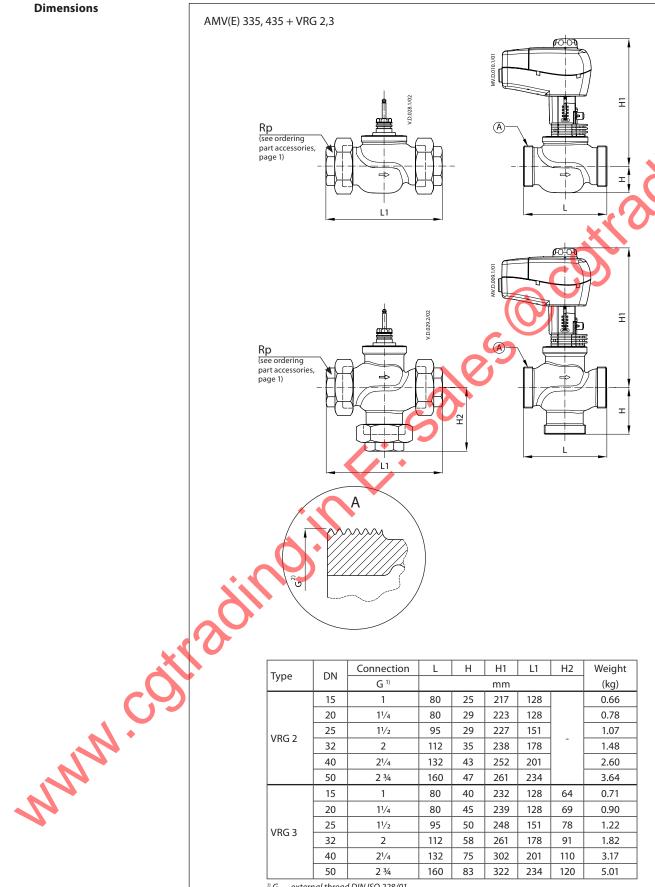
Design

(Design variations are possible)


VRG 2

- 1. Valve body
- 2. Valve insert
- 3. Valve cone
- 4. Valve stem
- 5. Moving valve seat (pressure relieved)

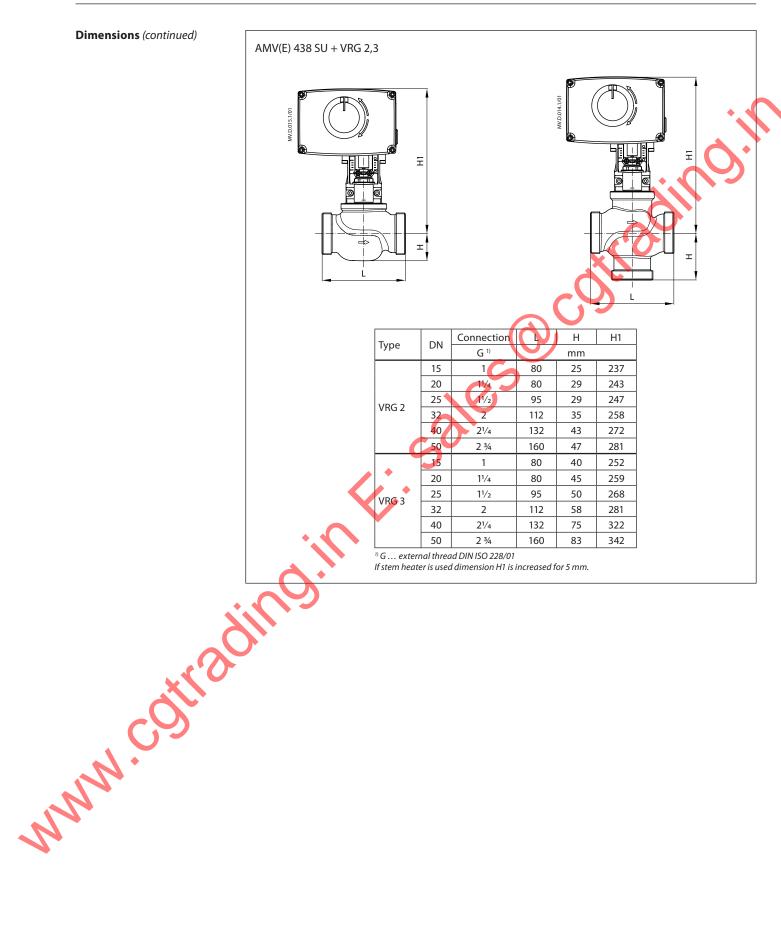
VRG 3


- 1. Valve body
- 2. Valve insert
- 3. Valve cone
- 4. Valve stem
- **5.** Valve seat
- 6. Pressure relieve chamber

DH-SMT/SI VD.CX.B1.02 © Danfoss 11/2009

Dimensions

Туре	DN	Connection	L	L H H1 L1 H2		H2	Weight	
	DN	G 1)	mm					(kg)
	15	1	80	25	217	128		0.66
	20	11/4	80	29	223	128		0.78
VRG 2	25	11/2	95	29	227	151		1.07
VKG 2	32	2	112	35	238	178	-	1.48
	40	21/4	132	43	252	201		2.60
	50	2 3/4	160	47	261	234		3.64
VRG 3	15	1	80	40	232	128	64	0.71
	20	11/4	80	45	239	128	69	0.90
	25	11/2	95	50	248	151	78	1.22
	32	2	112	58	261	178	91	1.82
	40	21/4	132	75	302	201	110	3.17
	50	2 3/4	160	83	322	234	120	5.01


¹⁾ G ... external thread DIN ISO 228/01

VD.CX.B1.02 © Danfoss 11/2009 DH-SMT/SI

If stem heater is used dimension H1 is increased for 31 mm.

Seated valves VRG 2, VRG 3

Dimensions (continued)

DH-SMT/SI VD.CX.B1.02 © Danfoss 11/2009

www.cotrading.in.Ei.sales@cotrading.in

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

VD.CX.B1.02 Produced by Danfoss A/S © 11/2009